
A Survey on Security and Vulnerabilities of Web
Application

Gopal R. Chaudhari, Prof. Madhav V. Vaidya

Department of Information Technology,

 SGGS IE & T, Nanded,

Maharashtra, India-431606

Abstract— Web applications are the distributed platform used
for information sharing and services over Internet today. They
are increasingly used for the financial, government, healthcare
and many critical services. Modern web applications
frequently implements the complex structure requires for user
to perform actions in given order. The popularity adds value
to these applications, which attracts attackers towards them.
The attackers are well known about the valuable information
accessible through the web application, which leads to serious
security attacks on web applications.

In this paper we survey the state of the art in web
application security; first we explain working of web
application and focus on the challenges for building secure
web application. We organized the existing security
vulnerabilities into the security properties that web
application should preserved, discussed the root cause of these
vulnerabilities and their corresponding preventive measures.
Next we focus on the malware attacks on the web application,
how the web applications are compromises for security and get
infected by malware. Finally we summarize the lessons and
discussed the future scope and opportunities in this area.

Keywords— Security vulnerability, Web Application,
separated by comma.

I. INTRODUCTION

Although traditional firewalls have effectively prevented
network-level attacks, most future attacks will be at the
application level, where current security mechanisms are
woefully inadequate [1]. The application level security
inherent in the web application’s code, regardless of the
technology used for web application development or the
security of the web server or the database on which it is
built. But the vulnerabilities are still present in the
application as the firewall or the intrusion detection systems
keep open the port 80 and 443 for online business purpose.
The web application provides client access to the end user
to the server functionality through the web pages. These
web pages contain the HTML, images, script code, etc. as
become more users friendly but also exploits the security
vulnerabilities.

The web applications like financial applications,
healthcare application, government websites, etc. are
interact with the backend database many times for the
client’s request response. If such web applications are
compromised for the security will result in financial,
informational, ethical, legal consequences issues for the
web application.

The security of the web application is most important,
according to the report by Web Application Security

Consortium, about 49% web application contains the high
severity level vulnerabilities and 13% of them are
automatically get compromised for the security
vulnerabilities. The unsecure web application leads to the
known security vulnerabilities such as Injection, Cross-side
scripting, cookie theft, security misconfiguration, session
hijacking, self-propagating worm’s attacks, etc.

The substantial amount of research had been devoted into
hardening and mitigating the different vulnerabilities of
web application. Many of these solutions wares based on
some assumption on the web technologies used in
application development and mitigate the concern security
flaws. The probability that these solutions can be applied to
other similar type of issue may be very less due to narrow
mind approach or practitioner may focus on providing an
exact solution to particular technology related vulnerability
only.

Fig. 1 Average number of vulnerabilities within web
application

In this paper we survey the state of the art in web

application security, with aim of having a systematic
categorization of existing vulnerabilities under broad
categories based upon security properties that web
application should preserve, discuss the roots of
vulnerability with preventive measures, and focused on
malware web application threats. The figure 1 shows the
percentage of the web applications affected by the different
vulnerabilities; some of those also present in OWASP Top
10. The OWASP Top 10 focuses on the identifying the
most serious vulnerabilities for the broad array of the
organizations [2].

Gopal R. Chaudhari et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1856-1860

www.ijcsit.com 1856

II. HOW A WEB APPLICATION WORKS

Web application is a distributed application which
enables the dynamic information and service delivery. As
shown in figure 2, web application consists of client side
and server side components. The client side component
which includes static web pages with embedded scripting
languages e.g. JavaScript executed within browser. Client
make http request to the web server by specifying particular
URL via internet.

Fig. 2 Web application overview

At server side, client’s request is processed within web

server using dynamic HTML pages either through
execution (CGI, or Java Servlets) or interpretation (PHP,
JSP) and provides appropriate response to the client request.
These servers actually contain the business logic of the
application. Business logic refers to the algorithm
implementation that to be performed to the data such as
how to create, display, stored and change the data. Client
can communicate with server side code using asynchronous
call such as AJAX and dynamically updates the HTML
pages. The web applications interact with the backend file
system or database server for storing and retrieving data.
Aspects of web application including programming
language, state maintenance and logic implementation
differentiate the web application from traditional
applications.

III. WEB APPLICATION SECURITY PROPERTIES AND

VULNERABILITIES

A secure web application should have the security
properties as shown in following figure 3. The logic
correctness means the application logic should be exactly
corrected as intended by the developers; input validity
refers to the user input validated before application use it;
state integrity means the application state should be kept
untampered and security misconfiguration refers to the
configuration settings, using secure components, etc. [3].

A. Logic Correctness

The logic correctness ensures that web application
functions correctly according to its business logic. Every
web application has its own business application logic; it is

difficult to covers all the aspects in single description. But
at global level logic corrects property refer to “Users can
access only the authorized information and operations and
follows the intended workflow provided by the web
application”. The web application is implemented as
number of independent modules which are accessed by user
in any order. The control flow across these different
modules performed through tight collaboration of two
following approaches. First approach is interface hiding,
where only the accessible resources and actions of
application are presented to the user by web links. In
second the explicit check on application state is done,
before any sensitive information application can accessed.
Vulnerabilities with logic correctness are known as logic
attacks or state violation attacks.

1) Input validation and sanitization: These techniques
ensure that the correct web application behaviour.
Basically input validation means the user inputs to the web
application should be validated before it can be utilized by
web application. For any web application which accepts
the untrusted data should incorporate the input validation
procedures, to ensure that the computing values are
legitimate and sensible.

In context of the web application the input validation
should be applied on the client side inputs which are further
processed on the server side. The web application accepts
the inputs through different means such as HTTP request
query strings, POST method bodies, database queries,
HTML5 postMessages invocations.

Consider the POST request shown in figure 4. The
request contains the several parameters including seesionID,
CSRF token, multiple parameters such as mobile number,
credit card number, and date. Each of these parameter
requires the different input validation such as credit card
number requires certain number of characters and Luhn
check, mobile number also requires certain number of
integer digits, date should be the current date in specified
format e.g. dd/mm/yyyy, etc. The sanitization preferably
output sanitization used throughout the web application
lifecycle. The output sanitizer typically escapes the special
characters from the untrusted input sources such as ‘<’, ‘&’
should not appear in un-escaped values to be incorporated.

Here we illustrate the most popular input validation
attacks includes SQL injection, Cross Side Scripting (XSS).

i) SQL Injection: It is a code injection technique, allows

attacker to retrieve crucial information from the web
server’s database [4]. The attacker is successful to launch
this attack due to user inputs flow into the SQL queries
without correct validation. Using SQL keywords along with
user inputs attacker can get SQL query result manipulated
as unintended execution. SQL injection can result in
authentication bypass, data loss, denial of access, and also it
may leads to destruction of whole database or the host
takeover.
Severity: Moderate to High
Preventive measures: Some preventive measures should be
considered to reduce the probability that the injection attack
successful such as avoid connecting to the database as a
super user access, avoid the use of dynamic SQL queries,

Gopal R. Chaudhari et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1856-1860

www.ijcsit.com 1857

validate/sanitize the input data before it can utilized by web
application, use encrypted or hash format to store sensitive
data, don’t reveal much informative in error messages;
instead of that use custom error messages to display the
minimal information [5].

ii) Cross Side Scripting (XSS): XSS flows occur when an

application processes the user supplied data from web pages
without proper validation or escaping that content. XSS
enables attacker to inject client-side script into web pages
that exploit the interpreter in the browser. The consequence
of XSS can be session hijacking, sensitive information
disclosure, may bypass the perimeter defences and site
trusting. There are three known types of XSS flows based
upon the how malicious script are injected, including stored
XSS (malicious script are injected to the persistent storage
media), reflected XSS, and DOM –based XSS, etc.
Severity: Moderate to High

Fig. 4 XSS vulnerability

Figure 4 shows how the XSS attack is carried out in web

application. The attacker can insert a message, containing
script code through input fields. This script is stored into
the database, when attacker opens the message page which
results in information discloser. As there is no security
checks performed while sending the script to the browser as
a message, this exploits to run any arbitrary script in
browser.
Preventive measures: Introduce the input validation
function after every input statement in web pages. Use
sanitization on untrusted data, identify the unsafe characters,
escapes special characters or validate them against different
parameters such as length, format, business rules, etc. Use a
character encoding technique (e.g. UTF-8) and configure all
components to use it.

2) State Integrity: In a typical web application, the user’s
web browser interacts with the remote application by
sending HTTP requests. The HTTP is a stateless protocol
without session mechanism [6]. This means the each
request is independent to the next. Dynamic web
applications have workflow that composed of multiple steps,
which corresponds to the multiple HTTP requests to the

application. Here the actions are defined by the URI [7] of
the HTTP request, the request parameters, and the server
side session record. State maintenance is the basic for
building the state based web application. Attacker targets
the vulnerabilities within session management and state
maintenance including session fixation, session hijacking,
cookie poisoning, and Cross-side request forgery. Number
of techniques are proposed to preserve the state integrity [8]
such as client-side information can be protected by Message
Authentication Code (MAC), session identifier are
generated with high randomness and transmitted over the
SSL protocol.

i) Broken Authentication and Session Management: In
application the authentication and session management
functions are often not implemented correctly. There are
key points to be considered such as logout functionality,
password management, timeouts, secret question, account
update. Attacker uses the flows in authentication and
session management functions (e.g. exposed accounts,
password, session IDs, etc.). Using the loopholes from
authentication and session management functions the
attacker can steals the sensitive information including user
credentials, session IDs, etc.
Severity: High
Preventive measures: Implement strong functions for
authentication and management, proper functions for
request time out, user account log in-out policy, session
expiration, allow secure and http cookies only, etc.,
sensitive information traversals in encrypted format only,
avoiding session IDs in URLs, and follow security
standards which specifies the requirement for secure
authentication and session management.

ii) Cross-side Request Forgery: This is a type of
exploitation where attacker tricks victim into sending
crafted web requests via image tag, XSS, or by means of
other techniques with the victim’s valid session identifier,
however, on the attacker’s behalf. Since the browser sends
the sensitive information such as session cookies
automatically, the victim’s session being tempered, result in
loss of sensitive information, also attacker can make forge
requests that are undistinguishable from legitimate ones.
Severity: Moderate
Preventive measures: CSRF can be prevented by use of
unpredictable token in each HTTP request. These tokens are
unique with per user and also unique with per request.
Including these unique token as a hidden field, cause the
value to be sent in the body HTTP request, and avoid its
inclusion into the URL, which is subject to exposure. These
unique tokens can also be included in the URL itself,
however such placement runs the risk that it will expose to
an attacker, thus it can compromise the secret token.

3) Security Configuration: The web application is a

complex ecosystem composed of a large number of
hardware/software components including web server,
database server, request handling queues, and many more.
This type of vulnerabilities focus on proper configuration of
components, access control mechanism among them, stays
component up to date, etc. The misconfiguration or
unauthorized accesses leads to the vulnerability where web

Gopal R. Chaudhari et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1856-1860

www.ijcsit.com 1858

application show false behaviour or anonymous user could
get the access to the web application infrastructure.

i) Security Misconfiguration: Improper security

configuration leads to this vulnerability. This vulnerability
can happens at any level of the application stack, including
components such as application server, web server,
database server and platform. This flow allows an attacker
to gain the unauthorized access to the system data or
functionality. It may result in complete system
compromised.
Severity: Moderate
Preventive measures: Good security for web application
requires properly defined, implemented and maintained
secure configuration for the all components including
platform, framework, and server components, etc. Run
scans and audits periodically to detect the future
misconfigurations and missing patches. A repeatable
hardening process also makes it fast and easy to deploy
another environment that is properly locked down.

ii) Using Components with known Vulnerabilities: Web

application composed of many vulnerable components such
as external libraries, frameworks, and other software which
always run with full privilege. Many times the application
developer doesn’t know about these components version
and their dependencies which may cause things worse.
Exploiting such vulnerability can cause serious data loss or
may server takeover.
Severity: Moderate to High
Preventive measures: It is better to not use the components
that you won’t write. But also there are open source
projects that do not create vulnerability patches for older
vulnerable version; they simply mitigate the problem next
versions. Software projects include some process to identify
the legitimate components, their versions along with all
dependencies, monitor the security of these components and
keep them up-to-date.

The figure 4 shows the end-to-end working of the web
application and the vulnerabilities as explained above
possible at different stages of the web application.

Fig. 4 Vulnerability present at different stages of web

application

IV. WEB APPLICATION - MALWARE THREATS

Malware attacks are the most discussed area of the web
application security. In recent years many attacks are
happens on the banking websites, organization’s websites
including Google’s blacklisting. Typically malware attacks
compromises the unpatched browser, operating system’s
services, and popular applications such as ActiveX,
Microsoft Office, outlook messenger, FTP, security related
processes such as antivirus program, security tools, etc.
Websites are updated constantly and with each update the
malware find a new means of infection. At initial stage the
malware attacker targets the web server by targeting the
vulnerabilities with it, later on malware attacks on the data
and infrastructure related components of the web
application, and latest malware attacks shows that malware
attacks on the end user computer and tries to steals the
user’s sensitive information. Figure 5 shows the evolution
of malware how they attacks on web application [9].

Fig. 5 Malware evolution

Gopal R. Chaudhari et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1856-1860

www.ijcsit.com 1859

A. Website vulnerabilities to Malware

The website owner continuously looks for improving
the customer experience, increasing the popularity of the
website, supporting the mobile devices, social networking
websites, user customization, etc. While making advances
in website increases the risk of malware hosting.

Google had about 350,000 index of malware hosting
websites [10]; malware distribution via website in 2010 was
almost double with 286 million of malware variants
identified in 2011. The interactivity on the websites
including e.g. social networking site – user comment field,
file upload, file download are also exploits vulnerability.
Technically these vulnerabilities are with improper input
validation, logging mechanism, and the fail-open error or
fail to close a database connection. OS commands, LDAP,
SQL, XPath queries are also vulnerable to the injection
vulnerabilities.

Mobile devices are other targets for malware as mobile
applications are wildly used by large amount of users [11].
The social networking sites are the malware transmission
channels where user unknowingly share and spreads the
links to the malware infected websites. Even with deep
sense of security strategy, it is very difficult to website
malware infection if the user interact malicious content or
activity or utilize the cloud based services.

V. CONCLUSIONS

Web applications are becomes popular and have wide
spread interaction medium in our daily lives. But at same
point using vulnerabilities the user sensitive data also
disclosed regularly. This paper surveys the different web
application vulnerabilities based on the security properties
that web application should preserved. However we enforce
to have a pen test, vulnerability assessment of the web
application for discussed vulnerabilities which reduces
chances of the occurrence of the vulnerabilities. However

vulnerability assessment tools are automated one which
saves time and money and also defend the web applications
from modern threats.

At the last the new advanced security attacks are always
emerging, requires the security professional to have positive
security solution without putting huge number of web
applications at risk.

REFERENCES
[1] J. Pescatore, Web Services: Application-Level Firewalls Required,

report no. SPA-15-5542, Gartner, Stamford, Conn, 7 Mar. 2002;
available at www4.garter.com/DisplayDocument?id=353429.

[2] OWASP Top 10 Web Application Vulnerabilities,
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Pro
ject

[3] Xiaowei Li and Yuan Xue, “A Survey on Web Application
Security”, Technical report, Vanderbilt University, 2011.

[4] Z. Su and G. Wassermann. The essence of command injection
attacks in Web applications. In Proc. POPL, 2006.

[5] Mohit Kumar, Abhishek Gupta, Azhar Shadab, Lokesh Kumar &
Vikas Kumar Tiwari, Defending Against Modern Threats in Web
Applications, International Journal of Computer Science and
Informatics ISSN (PRINT): 2231 –5292, Vol-1, Iss-4, 2012.

[6] Fielding,R., Gettys, J., Migul, J., Freystyk, H., Masinter, L., Leach,
P., Berners-Lee, T.: Hypertext Transfer Protocol {HTTP/1.1.RFC
2616, http://www/w3/prg/Protocols/rfc2616/rfc2616.html (June
1999).

[7] Berners-Lee, T., Fielding, R., Irvine, U., Masinter, L.: Uniform
Resource Identi_ers (URI): Generic Syntax. RFC 2396,
http://www.ietf.org/rfc/rfc2396.txt (August 1998).

[8] A. Barth, J. Caballero, and D. Song, “Secure content sniffing for
web browsers, or how to stop papers from reviewing themselves,”
in

[9] Oakland’09: Proceedings of the 30th IEEE Symposium on Security
and Privacy, 2009, pp. 360–371.

[10] Malware Info Resource Center, http://www.malware-
info.com/mal_faq_inject.html

[11] Google Security Blog,
Http://googleonlinesecurity.blogspot.com/2009/08/malware-
statistics-update.html

[12] http://www.forbes.com/sites/andygreenberg/2011/08/05/android-
app-turns-smartphones-into-mobile-hacking-machines/

Gopal R. Chaudhari et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1856-1860

www.ijcsit.com 1860

